RESULTS OF 1989 WIND RIVER SEDIMENT QUALITY EVALUATION

Project

The Wind River in-lieu Indian fishing site is located on the bank of the Wind River approximately 3/4 mile upstream from its confluence with the Columbia River. At present the site is only partially usable because of shoaling of silt. The facility consists of a boat ramp and a floating dock capable of accommodating up to six boats.

Previous Studies

No previous studies have been conducted in this area.

Present Study

Sediment samples for physical and bulk chemical analyses were collected on June 14, 1989 at the location shown on attachment 1. A total of 3 samples were collected. All samples were taken from between the new boat ramp and the floating dock. Two were labeled WR-C-1&2 (hereinafter called cored samples), and the other was labeled WR-S-1 (hereinafter called surface sample).

The cored samples were collected using transparent acid-rinsed cellulose butyrate acetate core liners. The water depth for samples WR-C-1&2 were respectively 12 inches and 14 inches. The sediment core penetration were 25 inches and 14 inches for the two cored samples respectively. The recovered material was extruded from the core liners and a channel subsample was taken. The surface sample was collected from the top 2 inches at various locations along the wetted portion of the shore.

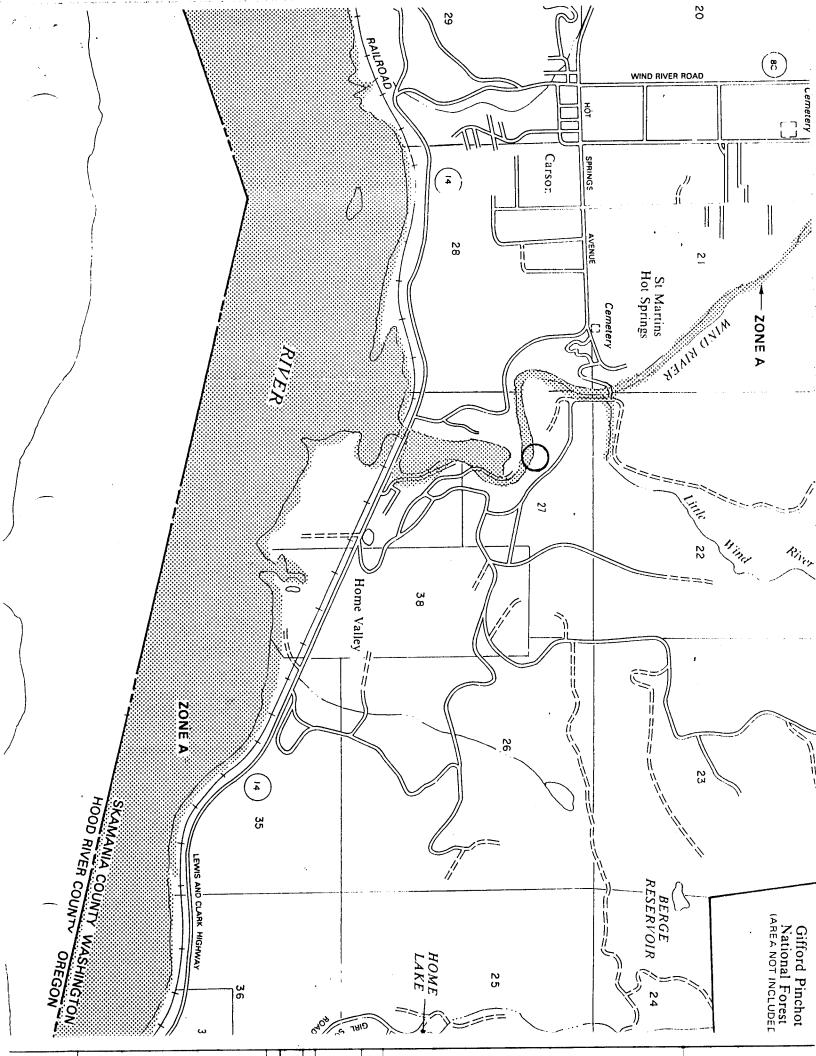
Material for physical analyses were placed in ziplock freezer bags. Samples for chemical analysis, were placed in 8oz. I-Chem Specialty Cleaned Container with teflon lined lids. All samples were placed in an ice chest with ice and were transported to NPDMT Laboratory for further processing on the same day as sampled.

NPDMT Lab performed the physical analyses of the 3 sediment samples collected. These analyses included grain size, total volatile solids and "Dredge Analysis" which consists of resuspended density, void ratio, percent of volatile solids, and specific gravity, for each of the 3 samples. (see attachment 2)

Chemical analyses for metal and pesticides/PCB's were also performed by the NPDMT Lab. (see attachment 3)

Discussion

Physical data: The material consists primarily of subangular to subround silty sand. The mean grain size for the cored samples respectively were 0.11 and 0.16, and 0.089 of that of the surface sample. The percent fines were 29.9% and 22.8% for samples WR-C-1 and WR-C-2 and 41.3% for sample WR-S-1. The percent volatile solids of the bulk of the material were 6.3% and 5.9% for the two cored samples respectively and 10.6 for the surface sample. Specific gravity for the cored samples was around 2.70 and was 2.60 for the surface sample.


Chemical data: No pesticides/PCB's were detected in the analyses performed by the NPDMT Lab at the detection limits required. Analysis for trace metals also show that all concentrations were below the levels of concern and are indicative of uncontaminated sediments.

Conclusion

The sediments tested during this evaluation are considered representative of the project sediments to be dredged. The bulk of the material to be dredged can be classified as primarily silty sand.

This sediment quality evaluation was completed by Mr. Mark D. Siipola, of the Coastal and Flood Plain Management Branch, Planning Division, USACE Portland District.

ATTACHMENT 1

ATTACHMENT 2

1

DEPARTMENT OF THE ARMY

NORTH PACIFIC DIVISION MATERIALS LABORATORY CORPS OF ENGINEERS

1491 NW Graham Avenue TROUTDALE. OREGON 97060 _9503

JUN 27 1989

PD-EN-G-L (1110-1-8100c) TROUT

MEMORANDUM FOR: Commander, Portland District, ATTN: CENPP-PL-CH

SUBJECT: W.O.#89-SHM-716, Report of Sediment Test Results

Project: WIND RIVER	
Intended Use:	
Source of Material: Wind River	
Submitted by: <u>CENPP-PL-CH (Siipola)</u>	
Date Sampled:	Date Received: 14 Jun 89
Method of Test or Specification: ASTM.	EM1110-2-1906
Reference: a) DA Form 2544, Order No. E8	86-89-0069, Change Order No. R-1,
b) NPD Form 300, Sample Trans	smittal, dated 14 Jun 89, covering
the samples tested,	
c) Our report, this subject,	dated 19 Jun 89.

1. Enclosed are:

- a. Enclosure 1, one summary sheet, "Results of Physical Analyses of Sediment," with results for the three samples tested.
 - b. Enclosure 2, three gradation analysis summary sheets.
- 2. This completes all work to date.

Encls

Copy Furnished: CENPD-EN-G

JAMES PAXTON

Director

Results of Dredge Test Analysis

CENPP Sample Number	Resuspended <u>Density,qms/L</u>	<u>Void Ratio</u>	Volatile Solids,%	Specific <u>Gravity</u>	Roundness Grading
WR-C-1	1550	2.087	6.3	2.70	subangular to subround
wr-c-2	1512	2.303	5.9	2.69	subangular to subround
<u> </u>	1378	3.241	10.6	2.60	subangular to subround
		•		•	

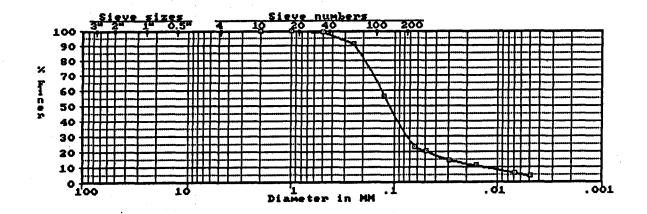
eceived: 14 Jun 89

Boring: --- Sample: WR-C-1 Depth: --- Lab No.: 71645

	leve Analysi Cumulative Grams	-	Sample	Temp	Hydrometer A nt:84.7 gr. Hydrometer	Analysis Start Diameter	Time:0000 Percent
Sieve	Retained	Passing	Time	(C) ⁻	Reading	in mm	Finer
5 In. 2.5 In. 1.25 In. 5/8 In. 5/16 In. No. 5 No. 10 Pan No. 18 No. 35 No. 60 No. 120 No. 230 Pan	0.00 0.00 0.00 0.00 0.00 0.00 84.70 0.00 0.40 7.40 37.20 64.90 84.70	100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0	1 3 10 100 200	20.0 20.0 20.0 20.0 20.0	17.0 12.0 9.0 5.0 3.0	0.0493 0.0293 0.0163 0.0068 0.0049	20.5 14.6 11.1 6.4 4.1

D85: 0.22 D60: 0.13 D50: 0.11 D30: .075 D15: .030 D10: .013 mm

Cu: 10.2 Cc: 3.22

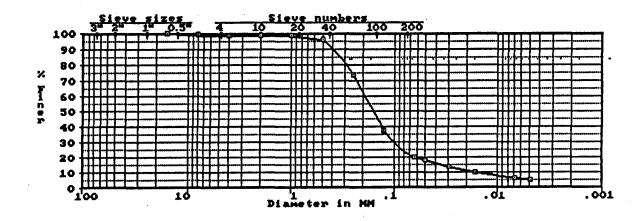

Estimated fines type used in place of Atterberg limits. Fines Type Used for Classification: ML, SILT

Gravel: 0.0%

Sand: 70.1%

Fines: 29.9%

----- ASTM D 2487 Classification ------


Boring: --- Sample: WR-C-2 Depth: --- Lab No.: 71646 Sample Weight: 85.5 gr. Start T Temp Hydrometer Diameter --- Sieve Analysis Cumulative Start Time: 0000 Grams Percent Percent Reading Retained Passing Time (C) Sieve in mm Finer 5 In. 2.5 In. 1.25 In. 5/8 In. 5/16 In. No. 5 20.0 20.0 20.0 20.0 20.0 0.00 15.5 11.5 18.3 13.7 0.0497 100.0 0.0294 100.0 8.5 5.0 4.0 10.3 6.3 5.1 0.00 100.0 0.0164 0.0068 100 0.00 100.0 200 6.40 8.60 8.60 684.20 10 98 No. Pan 0.20 2.30 No. 18 35 60 No. 96 No. 60 No. 120 53.20 No. 230 68.10 20 Pan 85.50 0.0

D85: 0.33 D60: 0.19 D50: 0.16 D30: 0.10 D15: .034 D10: .015 mm
Cu: 12.6 Cc: 3.40

Estimated fines type used in place of Atterberg limits. Fines Type Used for Classification: ML, SILT

Gravel: 1.2% Sand: 76.0% Fines: 22.8%

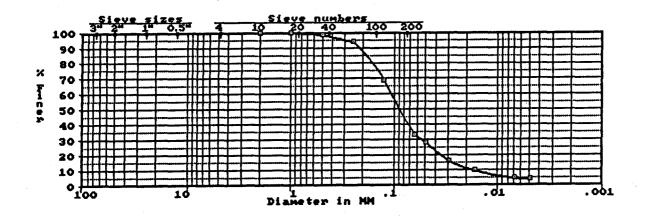
----- ASTM D 2487 Classification ----

Boring: --- Sample: WR-S-1 Depth: --- Lab No.: 71647

Si Sieve	eve Analysi Cumulative Grams Retained		Sample Time	Weigh Temp (C)	Hydrometer A nt:60.9 gr. Hydrometer Reading	nalysis	Time:0000 Percent Finer
5 In. 2.5 In. 1.25 In. 5/8 In. 5/16 In. No. 10 Pan No. 18 No. 35 No. 60 No. 120 No. 230 Pan	0.00 0.00 0.00 0.00 0.00 0.00 60.90 0.10 0.80 3.60 19.00 40.60 60.90	100.0 100.0 100.0 100.0 100.0 100.0 9.8 98.7 94.1 68.8 33.3	1 3 10 100 200	20.0 20.0 20.0 20.0 20.0	17.0 9.5 5.5 2.5 2.0	0.0493 0.0297 0.0166 0.0069 0.0049	28.4 16.3 9.8 4.9 4.1

D85: 0.18 D60: 0.11 D50: .089 D30: .054 D15: .027 D10: .017 mm

Cu: 6.28 Cc: 1.58


Estimated fines type used in place of Atterberg limits. Fines Type Used for Classification: ML, SILT

Gravel: 0.0%

Sand: 58.7%

Fines: 41.3%

--- ASTM D 2487 Classification ---

ATTACHMENT 3

DEPARTMENT OF THE ARMY

NORTH PACIFIC DIVISION MATERIALS LABORATORY CORPS OF ENGINEERS

CORPS OF ENGINEERS

1491 NW Graham Avenue TROUTDALE, OREGON 97060-9503

CENPD-EN-G-L (1110-1-8100c)

AUG | 1 1989

MEMORANDUM FOR: Commander, Portland District, ATTN: CENPP-PL-CH

SUBJECT: W.O.#89-SH-819, Results of Chemical Analyses

Project: WIND RIVER

Intended Use: Evaluate condition of site

Source of Material: Above site

Submitted by: CENPP-PL-CH

Date Sampled: 14 Jun 89

Method of Test or Specification: See Test Methods sheet

Reference: DA Form 2544 in progress.

- 1. Enclosed are results of analyses performed on three sediment samples from the above site. Included are:
 - a. Enclosure 1, results of analyses by CENPD-EN-G-L.
- b. Enclosure 2, Report No. 891239, with results of analyses from Columbia Analytical Services, Inc.
- 2. This completes all work requested to date.

Enclosures

Copies Furnished: CENPD-EN-G

JAMES A. PAXTON

Director

Results of Dredge Test Analysis

CENPP Sample Number	Resuspended Density.qms/L	<u>Void Ratio</u>	Volatile Solids,%	Specific <u>Gravity</u>	Roundness Grading
WR-C-1	1550	2.087	6.3	2.70	subangular to subround
WR-C-2	1512	2.303	5.9	2.69	subangular to subround
1R-S-1	1378	3.241	10.6	2.60	subangular to subround

Received: 14 Jun 89

Boring: --- Sample: WR-C-1 Depth: --- Lab No.: 71645

Sieve	eve Analysi Cumulative Grams Retained	s	Sample Time	Weigh Temp (C)	Hydrometer A nt:84.7 gr. Hydrometer Reading	nalysis Start Diameter in mm	Time:0000 Percent Finer
5 In. 2.5 In. 1.25 In. 5/8 In. 5/16 In. No. 5 No. 10 Pan No. 35 No. 60 No. 120 No. 230 Pan	0.00 0.00 0.00 0.00 0.00 0.00 84.70 0.40 7.40 37.20 64.90 84.70	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5 91.3 56.1 23.4	1 3 10 100 200	20.0 20.0 20.0 20.0 20.0	17.0 12.0 9.0 5.0 3.0	0.0493 0.0293 0.0163 0.0068 0.0049	20.5 14.6 11.1 6.4 4.1

D85: 0.22 D60: 0.13 D50: 0.11 D30: .075 D15: .030 D10: .013 mm Cu: 10.2 Cc: 3.22

Estimated fines type used in place of Atterberg limits. Fines Type Used for Classification: ML, SILT

Gravel: 0.0%

Sand: 70.1%

Fines: 29.9%

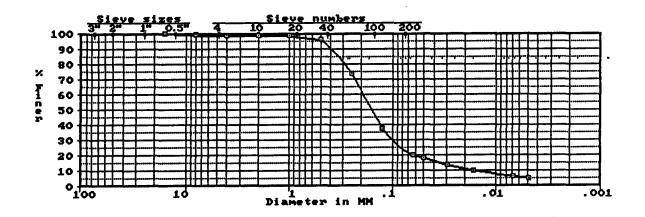
---- ASTM D 2487 Classification ----

Boring: --- Sample: WR-C-2 Depth: --- Lab No.: 71646

Sieve	ieve Analysi Cumulative Grams Retained		T	eigh emp C)	Hydrometer Ant:85.5 gr. Hydrometer Reading	nalysis Start Diameter in mm	Time:0000 Percent Finer
5 In. 2.5 In. 1.25 In. 5/8 In. 5/16 In. No. 5 No. 10 Pan No. 18 No. 35 No. 60 No. 120 No. 230 Pan	0.00 0.00 0.00 0.00 6.40 8.60 8.60 0.20 2.30 21.90 53.20 68.10 85.50	100.0 100.0 100.0 100.0 99.1 98.7 98.7 0.0 98.5 96.1 73.5 37.3 20.1	3 2 10 2 100 2	0.0 0.0 0.0 0.0 0.0	15.5 11.5 8.5 5.0 4.0	0.0497 0.0294 0.0164 0.0068 0.0048	18.3 13.7 10.3 6.3 5.1

D85: 0.33 D60: 0.19 D50: 0.16 D30: 0.10 D15: .034 D10: .015 mm

Cu: 12.6 Cc: 3.40


Estimated fines type used in place of Atterberg limits. Fines Type Used for Classification: ML, SILT

Gravel: 1.2%

Sand: 76.0%

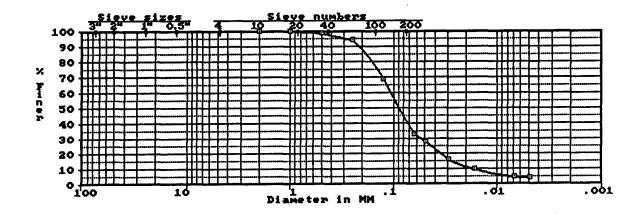
Fines: 22.8%

----- ASTM D 2487 Classification -----

Boring: --- Sample: WR-S-1 Depth: --- Lab No.: 71647 Sample Weight: 60.9 gr. Start T Time Hydrometer Diameter ---- Sieve Analysis -----Cumulative Start Time: 0000 Percent Percent Grams Time Reading Sieve Retained Passing (C) in mm Finer 20.0 0.0493 0.0297 17.0 28.4 0.00 5 <u>I</u>n. 100.0 2.5 In. 1.25 In. 5/8 In. 5/16 In. No. 5 9.5 5.5 20.0 16.3 0.00 100.0 1Ŏ 0.0166 20.0 20.0 0.0069 0.00 100.0 100 200 0.00 100.0 0.00 No. 5 No. 10 100.0 100.0 60.90 0.10 0.80 Pan 0.0 No. 35 No. 35 99.8 98.7 94.1 No. 60 No. 120 No. 230 3.60 19.00 40.60 60.90 0.0 Pan

D85: 0.18 D60: 0.11 D50: .089 D30: .054 D15: .027 D10: .017 mm

Cu: 6.28 Cc: 1.58


Estimated fines type used in place of Atterberg limits. Fines Type Used for Classification: ML, SILT

Gravel: 0.0%

Sand: 58.7%

Fines: 41.3%

----- ASTM D 2487 Classification ------

Metals Analyses

Sample Identification: WR-C-1 Matrix: sediment Solids, %: 66.3

Collected: 14 Jun 89 Received: 14 Jun 89 3050 Digestion: 19 Jun 89

AA Analysis: 20 Jun-3 Aug 89 Reporting Units: mg/Kg (ppm), dry wqt. basis

Comments: Silty sand, minor organics.

		Required
Metal	Result	Detection Limit
arsenic	19. 1	1.0
cadmium	(0. 1	0. 1
chromium	10.0	1.0
copper	40.5	1.0
lead	5.7	1.0
mercury	(0.0 2	0.02
nickel	20.3	1.0
zinc	93.4	1.0

Metals Analyses

Sample Identification: WR-C-2 Matrix: sediment Solids, %: 63.6 Collected: 14 Jun 89 Received: 14 Jun 89 3050 Digestion: 19 Jun 89 AA Analysis: 20 Jun-3 Aug 89 Reporting Units: mq/Kq (ppm), dry wqt. basis Comments: Silty silt, minor organics.

		Required
Metal	Result	Detection Limit
arsenic	18.0	1.0
cadmium	⟨0.1	0.1
chromium	9.0	1.0
copper	32.0	1.0
lead	4.9	1.0
mercury	(0.02	0.02
nickel	15.0	1.0
zinc	34.0	1.0

Metals Analyses

Sample Identification: WR-S-1 Matrix: sediment Solids, %: 50.7

Collected: 14 Jun 89 Received: 14 Jun 89 3050 Digestion: 19 Jun 89

AA Analysis: 20 Jun-3 Aug 89 Reporting Units: mg/Kg (ppm), dry wqt. basis

Comments: Silty silt, minor organics.

		Required
<u>Metal</u>	Result	Detection Limit
arsenic	24.1	1.0
cadmium	(0.1	0.1
chromium	9.9	1.0
copper	41.0	1.0
lead	5.8	1.0
mercury	(0.02	0.02
nickel	16.3	1.0
zinc	55.0	1.0

WIND RIVER

Sample Identification	:WR-C-1	Percent Solids:	66.3
Reporting Units: uq	/Kq (ppb), dry weight	Sample Matrix:	sediment
Collected: 14 Jun 89	GC Analysis: 28 Jun-5		

Analyte	Result	<u>Detection Limit</u>
Aldrin	<5.0	5.0
alpha-BHC	. <5.0	5.0
beta-BHC	<5.0	5.0
gamma-BHC	<5.0	5.0
delta-BHC	<5.0	5.0
Chlordane	<5.0	5.0
4,4'-DDD	<5.0	5.0
4,4'-DDE	<10.0	10.0
4,4'-DDT	<5.0	5.0
Dieldrin	<10.0	10.0
Endosulfan I	<5.0	5.0
Endosulfan II	<5.0	5.0
Endosulfan sulfate	<5.0	5.0
Endrin	<5.0	5.0
Endrin aldehyde	<5.0	5.0
Heptachlor	<5.0	5.0
Heptachlor epoxide	<5.0	5.0
Methoxychlor	<15.0	15.0
Toxaphene	<100	100
Aroclor-1016	<80.0	80.0
Aroclor-1221	<80.0	80.0
Aroclor-1232	<80.0	80.0
Aroclor-1242	<80.0	80.0
Aroclor-1248	<80.0	80.0
Aroclor-1254	<80.0	80.0
Aroclor-1260	<80.0	80.0

METHODS: "Test Methods for Evaluating Solid Waste", SW-846, 3rd Edition, U.S. EPA, November 1986:

Method 3540, Soxhlet Extraction Method 3660, Sulfur Cleanup Method 8080, Organochlorine Pesticides and PCB's

WIND RIVER

Sample Identification:_	WR-C-2	Percent Solids:	63.6
Reporting Units: uq/K	g (ppb), dry weight	Sample Matrix:	sediment
Collected: 14 Jun 89	GC Analysis: 28 Jun-5	Jul 89 Extracted:	21 Jun 89

Analyte	Result	<u>Detection Limit</u>
Aldrin	< 5. 0	5.0
alpha-BHC	<5.0	5.0
beta-BHC	<5.0	5.0
gamma-BHC	, ₹5. 0	5.0
delta-BHC	<5.0	5.0
Chlordane	<5.0	5.0
4,4'-DDD	<5.0	5.0
4,4'-DDE	<10.0	10.0
4,4'-DDT	<5.0	5.0
Dieldrin	<10.0	10.0
Endosulfan I	<5.0	5.0
Endosulfan II	<5.0	5.0
Endosulfan sulfate	<5.0	5.0
Endrin	<5 . 0	5.0
Endrin aldehyde	<5.0	5.0
Heptachlor	<5.0	5.0
Heptachlor epoxide	<5.0	5.0
Methoxychlor	<15.0	15.0
Toxaphene	<100	100
Aroclor-1016	<80.0	80.0
Aroclor-1221	<80.0	80.0
Aroclor-1232	<80.0	80.0
Aroclor-1242	<80.0	80.0
Aroclor-1248	<80.0	80.0
Aroclor-1254	<80.0	80.0
Aroclor-1260	<80.0	80.0

"Test Methods for Evaluating Solid Waste", SW-846, 3rd Edition, METHODS: U.S. EPA, November 1986:

Method 3540, Soxhlet Extraction Method 3660, Sulfur Cleanup Method 8080, Organochlorine Pesticides and PCB's

WIND RIVER

Sample Identification	on: WR-5-1	Percent Solids:_	50.7
Reporting Units:u	uq/Kq (ppb), dry weight	Sample Matrix:	sediment
	<u> 9 </u>		21 Jun 89

Analyte	<u>Result</u>	<u>Detection Limit</u>
Aldrin	<5.0	5.0
alpha-BHC	<5.0	5.0
beta-BHC	<5.0	5.0
gamma-BHC	<5.0	5.0
delta-BHC	<5.0	5.0
Chlordane	<5.0	5.0
4,4'-DDD	<5.0	5.0
4,4'-DDE	<10.0	10.0
4,4'-DDT	<5 . 0	5.0
Dieldrin	<10.0	10.0
Endosulfan I	<5.0	5.0
Endosulfan II	<5.0	5.0
Endosulfan sulfate	<5.0	5.0
Endrin	< 5. 0	5.0
Endrin aldehyde	<5.0	5.0
Heptachlor	< 5. 0	5.0
Heptachlor epoxide	<5.0	5.0
Methoxychlor	<15.0	15.0
Toxaphene	<100	100
Aroclor-1016	<80.0	80.0
Aroclor-1221	<80.0	80.0
Aroclor-1232	<80.0	80.0
Aroclor-1242	<80.0	80.0
Aroclor-1248	<80.0	80.0
Aroclor-1254	<80.0	80.0
Amoclor=1260	<80.0	80.0

"Test Methods for Evaluating Solid Waste", SW-846, 3rd Edition, METHODS: U.S. EPA, November 1986:

Method 3540, Soxhlet Extraction

Method 3660, Sulfur Cleanup Method 8080, Organochlorine Pesticides and PCB's

CENPD-EN-G-L
Laboratory Quality Control

1

Organochlorine Pesticides and PCB's

Process Blank

Reporting	Units:	uq/Kq (ppb)	
Comments:	Results	calculated	for sample size of 10 grams

Analyte	<u>Result</u>	<u>Detection Limit</u>
Aldrin	<5.0	5.0
alpha-BHC	<5.0	5.0
beta-BHC	<5.0	5.0
gamma-BHC	<5.0	5.0
delta-BHC	<5.0	5.0
Chlordane	<5.0	5.0
4,4'-DDD	<5.0	5.0
4.4'-DDE	<10.0	10.0
4,4'-DDT	<5.0	5.0
Dieldrin	<10.0	10.0
Endosulfan I	<5.0	5.0
Endosulfan II	<5.0	5.0
Endosulfan sulfate	<5.0	5.0
Endrin	<5.0	5.0
Endrin aldehyde	<5.0	5.0
Heptachlor	<5.0	5.0
Heptachlor epoxide	<5.0	5.0
Methoxychlor	<15.0	15.0
Toxaphene	<100	100
Aroclor-1016	<80.0	80.0
Aroclor-1221	<80.0	80.0
Aroclor-1232	<80.0	80.0
Aroclor-1242	<80.0	80.0
Aroclor-1248	<80.0	80.0
Aroclor-1254	<80.0	80.0
Aroclor-1260	<80.0	80.0

WIND RIVER

Matrix Spike Results

Sample Identification: WR-C-1 Reporting Units: uq/Kq (ppb), dry weight

Analyte	Spike <u>Added</u>	Spike <u>Result</u>	Sample <u>Result</u>	Percent <u>Recovered</u>
Aroclor-1260	357	330	<80.0	92.4
alpha-BHC	35.7	38.6	<5.0	108
namma-BHC	35.7	34.3	<5.0	96.1

zinc

WIND RIVER

Metals Analyses Quality Control Duplicate Analyses

Sample Identification	on: WR-C-1	Matrix:	sediment	
Reporting Units: mg		qt. basis		
Comments: Silty sa				
	Sample	Duplicate	Relative	
<u>Metal</u>	Result (SR)	Result (DR)	Difference, X	
arsenic	18. 1	20.0	10	
cadmium	⟨0.1	(0.1	NC	
chromium	10.0	10.0	0	
copper	41.0	40.0	2	
lead	5.6	5.8	4	
mercury	(0.02	(0.02	NC	
nickel	20.5	20.0	2	

Relative Difference, % = (SR - DR) / [(SR + DR)/2]

110.0

NC = Not calculated, since one or both values are below the required detection limit.

76.8

36

Metals Analyses Quality Control Process Blank

Matrix: sediment Reporting Units: mg/Kg

		Required
<u>Metal</u>	Result	Detection Limit
arsenic	(1.0	1.0
cadmium	(0.1	0.1
chromium	(1.0	1.0
copper	(1.0	1.0
lead	(1.0	1.0
mercury	(0.2	0.2
nickel	(1.0	1.0
zinc	(1.0	1.0

Metals Analyses Quailty Control Analyses of Reference Material (Laboratory Control Sample)

Reporting Units: ug/L (ppb)

Metal	USEPA QC Sample	True <u>Value</u>	_Found_	Recovered, %
arsenic	(WP 287)/2	50	50.7	101
cadmium	(WP 287)/5	5	4.8	9 6
chromium	(WP 287)/5	20	20.4	102
copper	(WP 287)/4	25	26.7	107
lead	(WP 287)/2	50	47.9	96
mercury	(WP 287)/2	2.5	2.7	108
nickel	(WP 287)/5	20	17.5	88
zinc	WP-11*	10.0	10.0	100

^{*} Commercial standard

Test Methods

USEPA, "Test Methods for Evaluating Solid Waste," Third Edition, November 1986:

Method 7060, arsenic : atomic absorption, furnace : atomic absorption, furnace Method 7131, cadmium atomic absorption, furnace Method 7191, chromium : atomic absorption, flame Method 7210, copper Method 7421, lead : atomic absorption, furnace : atomic absorption, manual Method 7470, mercury cold vapor : atomic absorption, flame Method 7520, nickel : atomic absorption, flame Method 7950, zinc

Custody Information

CHAIN OF CUST JUY RECORD

							l	1	-	1	1							
PROJECT P				2.8				Je?	\		\				_		2	PRESERVATION
1=				יואו		~	\\ \		\	`	\	\	`	\ \ \		-		
Sigola				ATNO:		\		<i>\</i>					\			:	a:	SPECIFY
SAMPLE NUMBER	DATE T	TIME COMP.	GRAB		74	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	×,	\						SAI	REMARKS OR SAMPLE LOCATION	TION	301	ADDED AND FINAL PH IF KNOWN
MR-C-1	641419	-	-	4			 -	-	-					Fresh	H.O			
WR-C- 2	١,		_	7				_	· 									
1-5-27	:		1	4										4				
			_	_	_			-	-									
				_	_		-	_	_	_					•	,		
			_	_	_		-	-	<u> </u>									
		-	-	_			-	_		_								
			_	_					<u> </u>									
				_	_			 -	_									
																•		
		.:	_	_	_				_									
			_													*	7 k.	
														•				
				_														
														_				
Relinquished by: ISignature) (1) (M) BS izalu	6/18	Dete / Time 1/89 1:30		Received by: (Signature)	ıy: (Siş	pnature	-	α.	Relinquished by: {Signature}	ished !	y: (Si	gnatr		⊕	Date / Time	Shipped vis:	:•:	
Relinquished by: (Signature)		Date / Time	Rec	Received hy: (Signature)	ıy: (Sig	pnature	-	<u> </u>	Received for Laboratory by: (Signature)	d for L	abora.	tory	: •	J	Date / Time	Shipping Ticket No.	licket.	No.
Relinquished hy: (Signature)		Date / Time	A.c.	Received by: (Signature)	y: (Sig	Inatura	æ.	E 97	Remark Date t Luil	1.0,01,	2.6	Cr, ((a, Hg	10,	101,61,	1 du	12,	1ky dry ut)
																		b

,

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

CLIENT: U.S. Army Corps of Engineers

SUBMITTED BY: Mr. Jim Paxton

PROJECT: Wind River

SAMPLE DESCRIPTION: Soil

DATE RECEIVED:

06/16/89

DATE ANALYZED:

06/30/89

WORK ORDER #:

891239

Total Organic Carbon (TOC) EPA Method 415.1 % Dry Weight Basis

Sample Name	Lab Code	% TOC
WR-C-1 WR-C-2	1239-1 1239-2	1.5 2.1
WR-S-1	1239-3	3.5

Approved by Dave Edilman.

Date 6/28/89

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

CLIENT: U.S. Army Corps of Engineers SUBMITTED BY: Mr. Jim Paxton

PROJECT: Wind River

SAMPLE DESCRIPTION: Soil

DATE COLLECTED: 06/14/89

DATE RECEIVED:

06/16/89 06/30/89

DATE ANALYZED:

WORK ORDER #:

891239

Solids Total EPA Method 160.3 % As Received Basis

Sample Name	Lab Code	Result			
WR-C-1	1239-1	61.4			
WR-C-2	1239-2	62.2			
WR-S-1	1239-3	50.0			

Approved by Dove Elelman.

Date <u>6/28/89</u>

APPENDIX A LABORATORY QC RESULTS

COLUMBIA ANALYTICAL SERVICES, INC.

CLIENT: Environmental Protection Agency

SUBMITTED BY: Jim Paxton

PROJECT: Wind River

SAMPLE DESCRIPTION: Water

DATE COLLECTED:

06/13/89

DATE RECEIVED:

06/16/89

WORK ORDER #:

891239

QA/QC Report TOC EPA Method 415.1 % Dry Weight Basis

CALIBRATION VERIFICATION STANDARD	True Value	Measured Value	% Recovery		
	. 20	19.8	99		
LABORATORY BLANK	Detection Limit	Blank Value			
	1	ND			

ND means None Detected

Approved by Dave Elelman, p

Date 6/28/89

APPENDIX B CHAIN OF CUSTODY INFORMATION

CHAIN OF CUSTULY RECORD

						0117	-		7	7	7	7	7	_	7	7 7	77				
ROJECT Wind Rive	r				IERS										PRESERVATION						
AMPLERS: (Signature)		(NO. CONTAINERS				//		/	. /	//	//	//	//		•			SPECIFY CHEMICALS
Laboratory	Trans	ter			Ö			"	/ /	/ ,	/ ,	Ι,	/ /	/ ,	/ ,	/ /	, REMA	BKS	·	CED	ADDED AND
SAMPLE NUMBER	DATE	TIME	COMP.	GRAB NO.	Ö.								//			/-	SAMPLE L	R	ON	-	FINAL pH IF KNOWN
WR-C-1	6/14/84				1	/											·		-		
WR-C-2	6/14/89				1	1									<u> </u>	<u> </u>				-	
WR-5-1	6/14/89		<u> </u>		1	1								<u> </u>	<u> </u>]				 	
						_		 					_	<u> </u>	-	ļ				+-	
			<u> </u>			_	<u> </u>	<u> </u>	<u> </u>				_	<u> </u>						+-	
		<u> </u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>	_	<u> </u>	<u> -</u>	<u> </u>	ļ			<u>.</u>	-	
	<u> </u>											<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ				┦	<u> </u>
			<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		1_	<u> </u>				+	
	ļ	ļ			ļ	 	<u> </u>	1_		<u> </u>	 -	<u> </u>	 	-	1					1	
		<u> </u>		_			<u> </u>	1	<u> </u>	_	<u> </u>	 	<u> </u>	↓_	╀-	-				1_	
		<u> </u>	1	╀	ļ	╀-	┞	↓_	ļ	_	-	╀-	┼	├-	┼-	-				_	-
		ļ	ļ	 	ļ		ļ	╀-	-	-	┦—	-	┼	-	-			-		+	-
		1	_	-		┼	 _	<u> </u>	-	 	-	-	-	-	┼-	-	•		· · · · · ·	╫	
			_	-		-	╀	-	\vdash	-	-	╀-		-	-	-					
Relinquished by: (Signature)	0	Date / Time		Recei	ived b	y: (Si	gnatu	(e)	<u> </u>	Rel	linqui	shed	by: (5	Signat	ture)	<u> </u>	Date / T	ime	Shipped	via:	<u> </u>
Relinquished by: (Signature) Joan Von den Akk Relinquished by: (Signature)	15 /	. 89 140	00																		
Relinquished by: (Signature)	2	Date / Tim	•	Recei	ived h	ved by: (Signature)				Re	Received for Laboratory by: Date / Time Shi (Signature)						Shipping	ping Ticket No.			
Relinquished by: (Signature)	3	Date / Tim	*•	Recei	ived b	y: (Si	gnatu	ire)		R.	mark	- ∠i/. I	- 7'								